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direction (a principle axis of the  crystall ine electric 
field) corresponds in our case with the  line joining 
the  two copper ions in a molecule. This line makes  
an  angle of 34"6 ° wi th  the  a c plane,  and  its projec- 
t ion on to the  a c plane an  angle of 32-5 ° wi th  the  
c axis. The corresponding values given by  Bleaney 
& Bowers for their  z direction are 33 ° and 33 °. 

The au thors  fur ther  discuss the  question as to 
whether  the  in teract ion between the copper ions is 
of a direct  na tu re  (Cu-Cu distance 2 A), or of Kramers ' s  
super-exchange type  act ing th rough  in termedia te  
oxygen a toms  (Cu-Cu distance 4 A). Whereas  t h e y  
seem to favour  the  la t te r  t ype  of interact ion,  the  
the  s t ruc ture  described in this paper  undoubted ly  
indicates direct  in teract ion between the  copper ions 
(Cu-Cu distance 2-64 A). 

We wish to t h a n k  Dr  R. A. W. Hau l  of the  Na t iona l  
Chemical Research Labo ra to ry  for carrying out  the  
chemical analysis and  Mr J .  H.  Talbot  of this 
l abora tory  for help in connection with  the  projection 
computa t ions  and  s t ruc ture  fac tor  calculations. This 
paper  is published by  permission of the  South Afr ican 
Council for Scientific and Indus t r i a l  Research.  
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Vibrational  Modif icat ions  of t h e  Electron Dis tr ibut ion  in Molecular  Crystals .  I. 
The  Dens i ty  in a Vibrat ing Carbon A t o m  
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The electron density derived from measurements of the Laue scattering of X-rays by a crystal is 
shown to be the density in the stationary crystal averaged over all possible displaced configurations 
of the atomic nuclei in thermal equilibrium together at  the temperature of the experiment. The 
calculation of the mean electron distribution falls into two parts : in general the mean density in an 
atom is a function of the tensor formed by the mean square amplitudes and mean products of 
amplitudes of the atomic motion; for a particular crystal this tensor has to be calculated from the 
force constants and geometry. 

In  the present paper the mean density in a carbon atom is computed as a function of the r.m.s. 
amplitude of isotrople thermal motion. It is found that quite a small amplitude suffices to reduce 
the peak density considerably below the value in a stationary atom; on the other hand, the bridge 
density in a bond between two atoms is increased. A~ the amplitudes which occur in many  molecular 
crystals at  ordinary temperatures the distribution in an atom is nearly gaussian. 

In Par t  I I  these results will be applied to the interpretation of some experimental distributions. 

1. Introduction 
Recent ly  theoret ical  calculations of the  electron 
distr ibutions in some conjugated organic molecules 
have  been made  according to several  different ap- 
proximat ions :  Klement  (1951) has t rea ted  naphtha lene  

by  the  valence-bond technique;  March (1952) has 
applied both the  molecular-orbital  and the  T h o m a s -  
Fermi  methods  to benzene. On the  other  hand,  
detailed electron-densi ty contour maps  derived from 
X - r a y  diffraction measurements  on crystals  of 
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naphthalene and anthracene have been published by 
Robertson et al. (Abrahams, Robertson & White, 
1949b; Mathieson, Robertson & Sinclair, 1950). An 
earlier note (Coulson, Higgs & March, 1951) has 
pointed out the dangers of making direct comparisons 
between the theoretical density, calculated for a 
stat ionary molecule, and the experimental density, 
measured for a molecule undergoing thermal agitation 
in a crystal. The present papers s tudy quanti tat ively 
the influence of thermal motion on the measured 
distribution. 

The most striking effect of vibration on the dis- 
tr ibution in the neighbourhood of an atom is the 
smearing-out of the peak which marks the position 
of the nucleus: the sharp strong peak in the stat ionary 
atom becomes a broad weak maximum in a vibrating 
atom. The height of the peak depends quite strongly 
on the mean amplitude of vibration, so tha t  variations 
from atom to atom due to bonding in a molecule may 
be augmented by variations due to different atomic 
vibration amplitudes. The bridge values of the density 
between bonded atoms undergo similar modifications, 
but  the changes are less marked than  those in the peak 
values. Thus in general, unless allowance is first made 
for the effects of thermal motion, the value of a 
comparison between theoretical and experimental 
distributions is somewhat dubious. 

First  of all, in § 2, the motion of a vibrating poly- 
atomic system is discussed. In  § 3 it is shown tha t  
the effective density @~ derived from X-ray measure- 
ments is in fact the average ~ of @ for all possible 
configurations of the atomic nuclei forming the crystal, 
in thermal equilibrium together at  the temperature 
of the experiment. In  § 4 ~ at  the mean centre of a 
carbon atom is computed as a function of the r.m.s. 
amplitude of isotropic atomic vibrations, and in § 5 
an estimate is made of the effect on ~ of anisotropy. 
The electron distribution in carbon corresponding to 
a selected value of the mean amplitude is calculated 
in § 6 and is compared with an experimental dis- 
tribution found in naphthalene; in § 7 an estimate is 
made of the effect on such a comparison of the 
termination of the Fourier series from which the 
experimental distribution is derived. The results are 
discussed in § 8. 

The results will be applied to the interpretation 
of the observed peaks in naphthalene, anthracene and 
other molecules in Par t  II .  

2. H a r m o n i c  v i b r a t i o n s  of  a p o l y a t o m i c  s y s t e m  

Let us first consider the motion of a crystal as a system 
of N atoms vibrating about ar~ equilibrium con- 
figuration. Let the instantaneous displacement of the 
r th atomic nucleus, of mass mr, have cartesian com- 
ponents (x, Yr, z~). Then in matr ix notation, the order 
of the coordinates being 

(xl, Yl, zl, xg, y~, z 2, . . . ,  xx, Y.v, z v) , 

the kinetic energy of the system is 

where T = ½~'M~,  (1) 

M ---- diag (ml ,  m l ,  m l ,  m2, m2, m 2 . . . .  , re.v, m y ,  m ~ )  . 

The potential energy is, to a first approximation, 

V----- ½x 'Fx ,  (2) 

where F is the matr ix of force constants. From the 
symmetric matrices, M and F, another may  be 
constructed, namely the dynamical matr ix (Born, 
1942), 

D = M - ½ F M - ½ .  (3) 

The vibration frequencies v of the system are then 
the 3N solutions of the secular equation, 

[D--eo2II = 0 ,  

in which I is the unit  matr ix  and ~o = 2:~v. Normal 
coordinates q are obtained from x by the transforma- 
tion, 

x ---- M-½Uq.  (4) 

The i th column of U consists of the normalized 
amplitudes of x in the i th normal mode of vibration, 
tha t  is, U is an orthogonal matr ix  ( U ' U = I = U U ' )  
which satisfies the equation, 

DU ---- U A ,  

where A = diag (co~). I t  follows from the last equation 
tha t  

D n =  UAnU ' , 

where n is any integer, positive or negative, and more 
generally tha t  

f(D) : Uf(A)U' ,  (5) 

where f ( z )  is any regular function of z. 
Expressed in terms of normal coordinates, the 

hamiltonian of the system is 

3N 
" ~  2 9 H = T + V  = ½~V(qT+oo~qT) .  

i = 1  

Now Bloch (1932) has shown, for a harmonic oscillator 
of hamiltonian ½(~12+w2q 9) in thermal equilibrium 
with its environment at  temperature T, tha t  the  
probabili ty tha t  q lies in the range (q, q+dq) is 

P ( q ) d q  = (?/2~)½ exp ( - -½?qZ)dq ,  (6) 
in which 

?-1 = q9 = (~/2w) coth ( h o ~ / 2 k T ) ,  

where k is Boltzmann's  constant and h is Planck's  
constant divided by  2z. Since the normal coordinates 
are dynamically independent (in the sense tha t  
H(q) = ~ Hi(qi) ,  so tha t  any total  eigenfunction has 

i 

the form ~(q) = I IvA(q i ) ) ,  the probabili ty tha t  all the 
i 

qi He in the corresponding ranges (qi, qi+dqi) equals 
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the product of the probabilities of the individual 
situations" 

P ( q )  dq ----- 11P~(q~) dq~ 
i 

= {irl/(2~)a~}~ exp ( - -½q ' rq)dq ,  
in which 

3N 
dq-----/'/dq~ 

i=1 
and 

where 
r -~ -- qq '  = T(A), 

9(z) = ½kz-½ coth (hz½/2kT).  

Transforming to the coordinates x according to equa- 
tion (4) and using the consequent relation dx = 
[M-iUldq,  we find tha t  the probability tha t  x lies 
in the range (x, x + d x )  is 

P(x)dx : P(q)dq  

----- (IAI/(2n).a'v}½ exp ( - -½x 'Ax)dx ,  (7) 
in which 

A-Z ___ M-½ur-zU,M-½ 

~--- XX' 

= M-½~(D)M-½, (8) 

by equation (5). More generally it follows from (6) 
tha t  the probability distribution for any subset x~ of 
the  coordinates x, irrespective of the values of the 
remaining coordinates, has the gaussian form, 

P(xl)dx~={IA~]/(2~)n} ½ exp (--½x;Azx~)dXl, (7a) 

t where Ai -1 = x~xx (8a) 

and n is the dimension of xt. 

3. Effects of t h e r m a l  mot ion  on the. sca t t e r ing  
of X- rays  by c r y s t a l s  

The influence of thermal motion on X-ray scattering 
has been discussed fully by Born & Sarginson (1941); 
some of their conclusions will be quoted here. Broadly, 
two effects may be distinguished: first, the Laue spots 
are weakened by the smearing-out of the electron 
.density; secondly, there is a diffuse background 
intensity due to the relaxation of strict periodicity 
in the crystal lattice. We are concerned here with 
the former effect. 

The modified Laue scattering is derived from that  
for a rigid crystal by changing the scattering factor 
~or the j t h  atom in the unit cell from the value fi 
for a stationary atom to the value 

gi : f ~ e x p  ( - -Li )  (9) 

ffor a vibrating one. The simplest formula for L i is 
%hat given by Born (1943): 

27t 2 
L~ = ~ ~ Su, j~, ~vk=kv , (10) 

m~ x, y 

where k = (k,--l~.) is the difference between the 
wave-vectors of the scattered and incident radiation 
( Iks l - - Ik ,  I = 2 -1, where ~ is the wavelength) and 
S = 9(D) is the scattering matrix (Born, 1942) for 
the crystal (the suffix 1 numbers the unit cells). 
Combining (8) and (10) we obtain the relation, 

Lj  = 2~ 2 ~ xjyjk=k v 
X~ y 

t = 2g2k'uju¢ k ,  (11) 

in which u~, is the column vector with components 
(xj, y/, z~). Alternatively, equation (11) may be written 
as 

8 ~  ~ s in  s 0 - -  
L~ - -  ~2 u2, k ,  ( l la)  

where 0 is the Bragg angle and Uj, k is the component 
of the displacement of the j t h  atom parallel to k 
(i.e. normal t o  the reflecting plane). 

Let us now consider the electron distribution in 
atom j. The density in a stationary atom is the Fourier 
transform of fj: at  a point r¢ from the nucleus it is 

9j(rj) = f f j (k  ) exp (2~rik'r.,.)dk; (12) 
conversely 

f~(k) = l ~(r.~) exp (--2zik ' r j )dr~.  (12a) 

The effective density derived from the actual Laue 
intensities is similarly 

e~(rJ) = I g~(k) exp (2~rik'r#)dk. (13) 

~-¥om (9), (l l) ,  03) and (12a) we find 

e~(r~) 
-- I l Q~(tj) exp [--2~2k'uiu ~ k + 2 .~ ik ' ( r~- - t j ) ]dkd t  

= l ~J(ti)Q(rj--t j)dt] 

I ~j(r/--u/)Q(ui)du , (14) 

in which 

Q (u/) = f exp ( -  2~Sk'A.T~k + 2~ik'uj) dk 

= exp (--½u~Aiuj) I exp ( - -2~k ;Ajk~)dk ,  
where 

t A~ -1 = uju i (15) 
and 

Now 
k 1 = k + (2~ i ) - IA iu  / . 

I exp (--27r2klA-flkl)dk = {[A~[/(2~)8)~, 

so that 
Q(uj) = {lAyl/(2~r)3}½ exp (--½u.;Ajuy) 

= e(uj), (16) 

as is evident from (7a) and (8a) with x I = uj, and the 
definition (15). Combining (14) and (16) we find that 
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07 (rj) = I q~(r~--u~)P(u~)du~ 

= 01(rj), (17) 

the thermal average of the density. Thus the dis- 
tr ibution which is derived from X-ray diffraction 
measurements is 

~(r) = {[A]/(2z)a}½ 1 0 ( r - -u )  exp ( - -½u 'Au)du,  (18) 

where A -~ = uu '  and the suffix j has been dropped. 

4. Calcula t ion of ~ for ca rbon  

The ealculation of ~ for a given atom such as carbon 
falls into two distinct parts. In general ~ is to be 
found as a function of r and A; in particular problems 
A has to be derived from the geometry and force 
constants of the crystal by means of equation (8). 
At present we are concerned with the former problem; 
an example of the lat ter  will be considered in Par t  II.  

I t  is necessary to make certain assumptions about Q, 
the s tat ionary density. Already, by using atomic 
scattering factors fj in the theory, we have implicitly 
neglected bonding. As is customary in X-ray scattering 
theory, we shall derive Q from the Hartree self- 
consistent field for free carbon. The field will be taken 
as tha t  for the spherically symmetric valence state, 
(1 s)2(2s)(2pz)(2pv ) (2p~), which predominates in bonded 
carbon: in terms of the radial distribution functions, 
R, S and T, computed by Torrance (1934) ~ ( r ) i s  
given by 

0(r) = (4zrr2)-l(2R2+S~+3T2). (19) 

When ~ is a spherically symmetric function such as 
(19), it is convenient to use a coordinate system whose 
axes lie along the principal axes of A" the probabili ty 
distribution then assumes the simpler form, 

P(u)du = (abc/(2~)a}½ exp [--½(a~2+b~i2+c~2)]du, (20) 

in which (2, ~], ~) are the components of u, 

d u  = de&/d$ ,  
and 

a-1 -- ~ ,  b-1 = ~72, c-1 = ~ .  

Thus ~(r) may  be expressed as a function of (x, y, z), 
the components of r along the principal axes of 
A, and of (a, b, c), the principal values of A. 

Inspection of (18) shows tha t  when ~(r) is an even 
function, so also is ~(r)" it therefore has a symmetrical 
maximum at r = 0, the mean centre of the atom. 
The value of this peak density is, according to (18), 
(19) and (20), 

~(0) = 

{abc/(2~)~}~ (4~u~)-112R~(u) + S~(u) +3T~(u)] 

in which u is the radial atomic displacement ( u e =  
~2q_~]2q_~2). On transformation to spherical polar 
coordinates this integral becomes 

-0(0) = (2R2+S~-+aT2)F(u)ch~ , (21) 
0 

in which 

F(u)  = 

(4x)-l{abc/(2xc)a}½ exp [--½u2(~x-+fl cos 2 0)] 
t'O ( 0 

where × sin O dO i dcf , 
a(~) = a cos 2 T-l-b sin 2 

and 
fl(~) = c - - a ( ~ ) .  (22) 

The integration with respect to 0 may be carried out 
and yields the formula, 

F(u)=(c~c)½(8~.u) -~ (--½u2~)~-~-H(ul'~)d~ o exp , 
(23) 

where H is the error function defined by 

H(x) = ~-~ oeXp (-- t2)dt .  

In the present section we shall consider only the 
simplest ease of (23), tha t  which occurs when the 
vibration is isotropic. When ~ ~i 2 ~ l u2 
then also a = b = c - - - - 3 ( u 2 )  -1, so tha t  A = a I .  I t  
follows tha t  c~ = a, fl = 0, and (23) may be integrated 
to give 

.F(u) = (a/2~r)~ exp (--½au") . (24) 

800 

 (0 00t/ 

I _ 

0 0"2 _ I 0"4 0"6 
(u ' )  2 (h)  

Fig. 1. P e a k  dens i ty  in ca rbon  as a func t ion  of t h e r m a l  
ampl i tude .  
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Table 1. Peak density in carbon for various r.m.s, displacements 

(~-~) ½ (A) ~ls(0) (e.A -a) ~2s(0) (e./~-a) ~2p(0) (e./~ -a) ~(0) (e./~ -a) 
0 413.3 20-4 0 847 
0.008 352.4 17"3 0"00 722 
0.016 298.5 14-6 0.01 612 
0.023 262.2 12-8 0.02 537 
0.032 219-6 10-7 0.04 450 
0.046 172-9 8-3 0.07 354 
0-065 125-9 5.9 0"11 258 
0.084 93.79 4-23 0.15 192 
0-091 83.38 3"70 0.16 171 
0.102 71"35 3.10 0.18 146 
0"129 49-43 2.03 0.23 102 
0-155 35.96 1.40 0.26 74-1 
0-205 20.70 0.77 0.30 43.1 
0.264 11-70 0.47 0"33 24-8 
0.373 4.972 0.316 0.314 11.2 (11-2) 
0.457 2.908 0.281 0.286 6.95 (6-95) 
0.647 1.114 0.223 0.213 3-09 (3.10) 

v(%) 

2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2"4 
2-4 
2"5 
2"7 
2-9 
3-9 
5"8 

11-2 
16.4 
27-9 

Table 2. Analytical approximation to -~(0). 
(u-~)½ (A) ~(0) (e.A-3) (~)½ (h) ~(o) (e.h-3) (,~)½ (A) - ~(0) (e.h-3) 

0.30 18.5 0.42 8-45 0-54 4-72 
0.31 17.1 0.43 8.00 0.55 4.52 
0.32 15.9 0.44 7.59 0-56 4-34 
0-33 14.8 0-45 7.20 0.57 4-16 
0.34 13-8 0.46 6.85 0.58 4-00 
0.35 12.9 0.47 6.51 0.59 3.84 
0.36 12.1 0.48 6.20 0.60 3-70 
0.37 11.4 0-49 5.91 0-61 3-56 
0-38 10.7 0.50 5-64 0-62 3-43 
0-39 10-0 0.51 5.39 0.63 3.30 
0.40 9.47 0.52 5.15 0.64 3-18 
0.41 8.94 0-53 4.93 0.65 3-07 

~(0) was computed for a series of values of a by using 
(21) and (24): it is tabulated in Table 1, and in Fig. 1 
it is plotted against (~)½, the r.m.s, amplitude of 
vibration (u ~ ---- 3a-1). The other quantities in Table 1 
are ~ ( 0 ) ,  ~.,.~(0) and ~2p(0), the contributions to ~(0) 
per Is, 2s and 2p electron respectively, and v(0), the 
percentage contribution from all the valence electrons 
( ~ =  2~A-~2~-4-3~2v; v =  (100/~)[@2~÷3~2p]). A graph 
of v against (~)½ is plotted in Fig. 2. When a is small, 
i.e. when (u~)½ is large, 

10 

30 

0 
0 

ll ! I I I I 
o2 (~)~ (h) o.~ 0.6 

V 

(0A) 

Fig. 2. Percentage  valence-electron cont r ibu t ion  to ~(0) as a 
func t ion  of t he rma l  ampl i tude .  

F(u) -- (a/2~)~, 

provided that  u is not too large. Since R, S and T 
fall off rapidly at large distances from the nucleus, 
it follows from (21) that  the asymptotic form of ~(0) 
for large (~)½ is 

~(0) -~ (a/2g)~ (2R~+S2--~3T~)du 
o 

- -  , 8  

= 6(2~u~/3)-~, (25) 

since R, S and T are normalized to unity. This result 
suggests that  it may be possible to approximate to 
~(0) over a moderate range of" values of (7)½ by a 
function of the form C(u2) - ' .  In fact it was found that  
the curve of Fig, 1 is fitted closely over the r~ng~ 
(u--2)½ ----- 0-30-0.65 /~ (~(0) : 18-3 e.A -3) by the for- 
mula 

~(0) - -  1.13(u2)-l"]e; (26) 

this function is tabulated in Table 2. The numbers in 
brackets in Table 1, column 5 are approximate values 
of ~(0) calculated from (26): comparison with the 
directly computed values indicates that  (26) yields 
values which are accurate to less than 1% in the range 
covered by Table 2. 
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5. Effect of anisotropy 

An estimate of the effect on 5(0) of anisotropy in the 
atomic motion may be made by considering the special 
case of anisotropy in one direction only. If b : a 
and c ---- a(1 +A),  where A is an anisotropy parameter, 
then in (22) a(~p)= a and fl(~0)= aA,  so that  (23) 
may be integrated to give 

F(u)= (l+a ½_a 
\ A / 4:ru exp (--½au~)H(u]/½aA)" (27) 

The r.m.s, amplitude is then 

= [ 3+2  ]½ 
[ a ( l ÷ A ) J  " 

5(0) was calculated from (21) and (27) for the special 
values, a ~ 4 atomic units, A -~ ½: these correspond 
to {~)½ = 0.431 A, (~/~)½ = 0.82. The value found 
was 8.13 e.A -a, which differs by less than 2% from 
the value 8.00 e./~ -a for isotropic motion. I t  appears 
that  a considerable degree of anisotropy would be 
required to produce a serious change in 5(0). Con- 
versely, 5(0) = 8.13 e .~ -a corresponds to an isotropie 
r.m.s, amplitude of 0.427 ~ (Table 2), which differs 
by 1% from the anisotropie value, 0-431 J~. Thus, 
for such a degree of anisotropy, the error in (u-2)½, 
calculated from 5(0) on the assumption of isotropy, 
is quite small. 

6. Isotropic  mot ion:  the electron distribution 

When the atomic motion is isotropic (A = aI) and the 
stationary distribution has spherical symmetry, 
equation (18) becomes 

5(r) (a/2:z)i I eft) exp ( - -½au2)d t ,  

in which t = r ~ u  (see l~ig. 3). On transforming to 
spherical polar coordinates in t-space with the poIar 
axis along r, and using the relation, 

u 2 = r 2 ÷ t 2 -  2rt cos 0 , 
we obtain 

f ~(r) -- (a/2z~)~ exp (--½ar ~-) Q(t) exp (--½at 2) 
0 

s × [ l0 exp (art O) sin 2,~ 

r 

Fig. 3. Coordinates used in integration of ~(r). 

On carrying out the 0 and ~ integrations, we find that  
5 has the spherically symmetric form, 

f 5(r) = 4z~(a/2ze)~ exp (--~ar ~) 0 ~(t) exp (--½at 2) 

sinh (art) 
× t~dt. (28) 

(art) 

In terms of the radial distribution function, 

D(r) = 4~r2~(r) = 2R2 ÷ S~ ÷ 3 T  2 , 

this may be written as 

5(r) ---- (a/2~)~ exp (--½ar ~) D(t) exp (--½at 2) 
o 

sinh (art) 
× dr.  (28a) 

(art) 

By expanding the function (art) - I  sinh (art) as a 
power series we obtain a formal series expansion of 
5(r)" 

oo Qn(a) (ar2)n ' (28b) 
5(r) -- exp (--½ar2) n=o "~ (2n÷ 1) .Y 

where 

0n(a) = (a/2~)~ (at2)nD(t) exp (--½at~)dt. (29) 
o 

From (28/)) we derive formulae for the height of the 
density peak and its curvature- 

P(a)  ~- 5(0) = qÙ, (30) 

the function computed in § 4; 

C ( a ) ~ -  (d~51 
- -  \drg./,= ° : a(0o--½~1) . (31) 

The asymptotic form of 5(r) for large r.m.s, am- 
plitudes may be obtained from (28a) by allowing a 
to tend to zero" the integral tends to the value 

f , - D ( t ) d t  = 6, so the asymptotic form of the distri. 

bution is 
-~(r) ~ 6(a/2xl)~- exp (--½arg) . (32) 

This result indicates that  when (~)½ is large the 
distribution approximates closely to a gaussian peak, 
a fact which has long been known empirically by 
X-ray crystallographers (see Costain, 1941). When 
(u~) ½ is finite, the gaussian function which is the best 
fit to the actual distribution for small r (i.e. which 
has the same peak height and curvature) is 

5g(r) = P exp (--½a'r2), (33) 
where 

a' = C / P  = a(1--~el/e0 ) . 

The function 5(r) was computed from formula (28a) 
with a = 4 atomic units, corresponding to (u-~)½---- 
0.457 A. The integral Q~ was computed for the same 
value of a, and from it and Q0 (Table 1, column 5) 
the parameters in the gaussian function ~9 were found : 
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P = 6.955 e./~ -a , 
a '  ---- 11.24 A -2 , 
C -~ a ' P  -~ 78.16 e.A -5 . 

Both functions are tabulated in Table 3 and displayed 

Table 3. Elec t ron  d i s t r i b u t i o n  i n  carbon 

(~-~)½ = 0.457 h 

r (A) ~ (e.A -a) ~g (e.A -3) 
0 6"955 6-955 
0-132 6-309 6.306 
0.264 4.744 4-700 
0-396 3.030 2.880 
0-528 1.730 1.450 
0.660 0-956 0.600 

graphically in Fig. 4" it is seen tha t  ~(r) is closely 
gaussian up to about 0.4 _~ from the centre. 

• :~ 

6 

(e. h -3) 

2 

0 = I I I I I I 

0 0.2 r (A) 0-~ 0"6 

Fig. 4. Electron distribution ~(r) for carbon at (u-~)½=0.457 /1~, 
and gaussian curve ~(r). 

Fig. 5. Labelling of carbon atoms in naphthalene. 

The carbon atom A in naphthalene (Fig. 5) on the 
contour map drawn by Abrahams, Robertson & White 
(1949b) has a peak density of 6.9 e.A-a; it is therefore 
suitable for a comparison with the computed dis- 
tribution. A graph of In ~ against r ~ (Fig. 6), plotted 
from measurements on the map along a line from the 
centre of atom A towards the centre of the ring 
(to reduce the effect of overlap from neighbouring 
atoms), is roughly linear up to r ---- 0.6 /k: thus the 

experimental distribution is closely gaussian. However, 
the curvature of the experimental peak is 57 e.A -6, 
considerably less than the calculated 78 e./~ -5. The 

I 

0-2 r2 (A2) 0"a 

Fig. 6. Plot of In ~ v.r 2 for atom A of naphthalene 
(from measurements on Robertson's map). 

source of this discrepancy probably lies in the use of a 
finite Fourier series in the calculation of the ex- 
perimental distribution: this point is discussed more 
fully below in § 7. 

The foregoing calculations permit us to estimate 
the effect of thermal motion on the bridge value of the 
density in a bond between two carbon atoms. If the 
change in the distribution due to bonding is neglected 
and the r.m.s, amplitudes of the two atoms are 
assumed to be equal, the bridge density is 

B ( a )  = 2~(½l), (34) 

where 1 is the bond-length. Taking 1 : 1.4 J~ (a value 
typical of bonds belonging to benzene rings) and 

(u2)½ ---- 0.457 J~ (corresponding to the peak, P : 
6"9 e.• -8, in atom A of naphthalene), we find B = 
1-60 e.A -3 by extrapolating the data  of Table 3 to 
r : 0.7 J~. This value may  be compared with B---- 
1-27 e._~ -a, computed directly from the Hartree field 
for s tat ionary atoms. The motion increases B by  
0.33 e./~ -3. 

An estimate of the accuracy of the approximate 
equation (34) may  be made by considering the electron 
distribution in benzene calculated by March (1952). 

For the bridge density in a stationary G-C bond 
according to the molecular-orbital theory March gives 
the value 1.9 e.A -3. A calculation using the same 
analytical wave-functions (Slater, 1930) and the 'over- 
lapping atom' approximation (34) yields the value 
1-58 e.A -a for the same density. The difference, about  
0.3 e.A -3, represents the effect of bonding: it is roughly 
equal to the increase in the Hartree-field density due 
to thermal motion. Clearly an adequate t reatment  of 
bridge densities must take both effects into account. 

I t  may  be remarked tha t  the bridge values without,  
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bonding or vibration, calculated from Hartree and 
Slater atomic wave-functions also differ by 0.3 e._~ -a. 
Thus the choice of wave-functions is another im- 
portant  factor. 

7. T h e  e f fec t  of  f i n i t e - s e r i e s  e r r o r s  on  th e  
d i s t r i b u t i o n  

Ideally the experimental distribution is the sum of an 
infinite Fourier series, whose coefficients are obtained 
from the intensities of the diffracted X-rays. In 
practice the series used is finite, since the reciprocal 
radius, k = I kl = 2 ~ - l s i n 0  (in the notation of 
equation (10) et seq.), cannot exceed the limiting value, 

k o --  2), -1 ; (35) 

moreover, not all the spectra lying within this radius 
are actually recorded. 

In  order to estimate the errors introduced into peaks 
and curvatures by such a finite series let us consider 
the simpler problem of an isolated atom. The density 
distribution and the atomic scattering factor are then 
related by the reciprocal Fourier equations, 

~(r) ---- I f ( k ) e x p  (2:~ik 'r)dk,  / 

f(k) ---- I ~(r) exp ( - - 2 z i k ' r ) d r .  
(36) 

When the distribution has  spherical symmetry,  the 
integrations over angular coordinates may  be carried 
out: the transforms become 

#(r) = 2r-l  f ° f ( k )  sin (2x~kr)kdk ' o(r) 
(36a) 

f(k) : 2k-1\  sin (27dcr)rdr. 
0 

From the former equation we derive formulae for the 
peak height and curvature:  

(37) 

3 (k) k4dk. 

The corresponding parameters of the distribution 
obtained by restricting the range of integration to the 
sphere, k < k 0, in reciprocal space are 

P(ko) = 4~ f:°f(k)k~dk , 
(37a) 

c(ko) = - - 5 -  (k)k~dk. 

Let us simplify further by using the gaussian ap- 
proximation (33) to the distribution. Then the second 
of equations (36) may  be integrated to give 

f (k)  = P(2~/a')~ exp (--2~2k~]a') . (38) 

Let us define the fractional errors introduced into 
P and C by the finite reciprocal radius: 

~(P)  = (P - -P (ko ) ) /P ,  

~(c)  = { c - C ( k o ) } / c .  

Then from (33), (37), (37a) and (38) we find 

d(P) = (2/1/z)r(~; 2~2k~/a'), | 
~(C) = (4/3~/:~)~,(~ ; 2:~2k02/a'), t (39) 

where y is the incomplete gamma function, 

S ),(n; x) = e-tt n-1 d t .  
z 

An application of the recursion formula, 

~ ( n + I ;  x) = nT(n; x)+xne -x , 

to (39) shows tha t  

~(C) ---- ~ (P)-}-(4/3]/~z)(2zek~/a')~ exp (--2:zek02/a'), 

i.e. the error in C is always greater than tha t  in P.  
I t  is of interest to apply equation (39) to the dis- 

tribution Qa computed in § 6: then a'---- 11.24 /~-% 
The wave-length used in the experimental work on 
naphthalene was 2 = 1.54 A (Abrahams, Robertson 
& White, 1949a), so the appropriate limiting reciprocal 
radius is not greater than tha t  given by (35), /c o = 
1.30 A -1. The corresponding errors are computed 
to be 

~(P)  = 0.112, ~(C) = 0.306. 

The parameters of ~ are P = 6-955 e.A -3, C---- 
78.16 e./~-5; thus the parameters of the modified 
distribution are 

P(ko) = 6"18 e.A -s, C(ko) = 54.2 e.A -~ , 

which may  be compared with the experimental para- 
meters, 

P = 6"9 e.A -~, C = 57 e.A -5 . 

The theoretical peak has been reduced slightly below 
the comparable experimental peak, but  the agreement 
between the curvatures is now much more satisfactory. 
I t  seems likely tha t  the theoretical distribution having 
the same P(ko) as the experimental one would also 
have approximately the same C(ko). 

8. D i s c u s s i o n  

Fig. 1 shows tha t  the effect of vibration on the peak 
density is considerable: an amplitude of ½ A reduces 
it by a factor of more than 100. This is of course due 
to the sharpness of the peak in the s tat ionary atom. 
The effect on the bridge densities in bonds is less 
pronounced, but  the calculations of § 6 show tha t  
these may  be increased by more than 25%. I t  is 
therefore impossible to make any useful comparisons 
between the densities calculated by quantum- 
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theoretical methods for stat ionary molecules and the 
corresponding densities derived from X-ray diffraction 
measurements, unless the lat ter  are first corrected 
adequately for thermal motion. 

The closeness of 5, as calculated in § 6, to the 
gaussian curve ~g suggests tha t  the distribution at an 
amplitude such as tha t  which occurs in naphthalene 
is not very sensitive to the shape of ~; for ~g depends 
on ~ only through the two integrals, ~0 and Pl. Thus 
many details of the electron distribution in a stat ionary 
molecule are likely to be lost in the distribution 
occurring in a molecular crystal at  ordinary tempera- 
tures. 

The (u-2)½--~(0) curve may  be used to determine 
the r.m.s, amplitude of a carbon atom having a given 
observed peak density. I t  is of interest therefore to 
examine the assumptions used in the calculations of 
§ 4. These are as follows: 

(i) The wave-functions used are those for a free 
carbon atom. Bonding is neglected except as the source 
of the potential energy for motion of the nuclei. 
Since it  is mainly the valence (2s) (2p) a electrons which 
take part  in bonding, the inner-shell (Is) ~ electrons 
being practically unaffected, the quant i ty  v (Fig. 2) 
provides an index of the probable effect of bonding on 
~(0). So long as v is small, the contribution from the 
valence electrons is relatively unimportant.  The range 
of values of (~)½ occurring in molecular crystals such 
as naphthalene and anthracene is 0.4-0.5 A, corres- 
ponding to 5(0) -- 9.5-5-5 e.A -a (data from Abrahams 
et al., 1949a, b; Mathieson et al., 1950); in this region 
v = 13-19 %, so the effect of bonding may be appre- 
ciable. 

(ii) The atomic wave-functions are those derived by 
the Hartree method. These are the ones which it is 
customary to employ in X-ray scattering theory.* 
Recentl~r McWeeny (1951) has discussed the use of 
analytical wave-functions in calculating scattering 
factors for stat ionary atoms, and in a later paper 
(1952) he deals with the effects of bonding. 

An idea of the importance of the choice of wave- 
functions may  be gained by comparing the value 
847 e.A -a, calculated in § 4 for the s tat ionary peak 
density, with the value 797 e.J~ -a, derived from 
analytical wave-functions of the form, 

~pl~(r) = gl exp (--Tr) , 
v/9~(r) ---- g~.(r--oQ exp ( - -~r) ,  

where gl, gg, c~, 7, (5 are constants: the difference is 

about 6%. Now when (u-2) ½ is large, ~ tends towards 

* Actually, the scattering factor for carbon tabulated by  
James & Brindley (1931), which is frequently used by cry- 
stal]ographers, was derived by interpolation from the Hartree-  
field scattering factors of various other atoms; the /~artree- 
field for carbon was not  computed until several years later 
(Torrance, 1934). i~Ioreover the JB  factor is designed for the 
ground state, whereas it seems more reasonable on chemical 
grounds to consider the valence state, as has been done in 
this paper. 

the asymptotic  form (32), which is independent of 
the choice of wave-functions. Therefore it  is reasonable 
to suppose tha t  the error in 5 due to any special 
choice of wave-functions tends to decrease as (u--2)½ 
increases. I t  is probable then tha t  the error in 5(0) 
caused by the assumption (ii) is not worse than, say, 
5?/0. 

(iii) Anharmonicity of the vibrations is neglected. 
The influence of this can be assessed only by a detailed 
analysis of the spectra of particular crystals. I t  is 
probably not important,  provided tha t  the amplitudes 
are not too large. 

(iv) The motion is assumed to be isotropic. The effect 
of anisotropy has been discussed in § 5, where i t  was 
found to be small in the example which was examined. 

(v) The density at the centre of one atom due to its 
neighbours has been neglected. This is justified if the 
bridge densities between the atom and each of its 
neighbours are small in comparison with the peak 
density, for the contribution to the peak from a 
neighbour is presumably much less than half the bridge 
density. 

When all these sources of error have been taken into 
account, one may  conclude tha t  the accuracy of ~(0) 
corresponding to a given (~)½ is probably not  worse 
than 20 % in the range covered by  Table 2. I t  follows 
from equation (26) tha t  the value of (uS) ½ corres- 
ponding to a given ~(0) may  be calculated with an 
accuracy not worse than about 10 % in the same range. 

Finally it may  be remarked tha t  the considerations 
of § 7 indicate tha t  even a comparison between a 
thermally averaged electron density, such as tha t  
which has been computed in this paper, and an 
experimental density is of little value unless the lat ter  
has first been corrected for finite-series errors. 

I t  is a pleasure to record my  grati tude to Prof. 
C. A. Coulson, F.R.S., who suggested this problem to 
me, for his advice and encouragement throughout the 
course of the investigation. I am glad to have had an 
opportunity to discuss the problem with Dr D. W. J. 
Cruickshank, who first showed me the importance of 
the finite-series error. My thanks are also due to the 
University of London for the award of a Postgraduate 
Studentship and to King's College for a Layton 
Studentship, during the tenure of which the work was 
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The Crystal Structure of DL-Serine* 
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The crystal  s t ructure  of DL-serine has  been determined b y  the  use of complete da ta  accessible wi th  
Cu Kc~ radiat ion.  A sat isfactory tr ial  s t ructure  was quickly obta ined from a three-dimensional  
Pa t te r son  funct ion by  the applicat ion of a new method  for i~aterpreting these functions.  This method,  
called the Patterson superposition method, is related to several other  methods  recent ly  proposed, 
such as the vector convergence method  of Beevers & Rober tson,  bu t  differs from them in procedure 
and  criteria employed. 

The atomic parameters  were refined b y  three-dimensional  Fourier  and  least-squares procedures. 
In te ra tomic  distances and  in terbond angles are close to those expected, and  there is a sat isfying 
sys tem of hydrogen  bonding th roughout  the crystal .  

Introduction 
Within the past  decade and a half, determinations 
have been made in these Laboratories of the crystal 
structures of a number of amino acids and related 
substances by X-ray diffraction methods. The crystal 
structures of diketopiperazine (Corey, 1938), glycine 
(Albrecht & Corey, 1939), DL-alanine (Levy' & Corey 
1941), Ls-threonine (Shoemaker, Donohue, Schomaker 
& Corey, 1950), acetylglycine (Carpenter & Donohue, 
1950), #-glycylglycine (Hughes & Moore, 1949) and 
hydroxy-L-proline (Donohue & Trueblood, 1952) have 
been determined, and the positional parameters for 
DL-alanine (Donohue, 1950) have been further refined. 
The bond distances and bond angles, modes of 
hydrogen bonding, and steric relationships of the 
molecules of these substances have been found very 
useful in the formation of conceptions and definite 
conclusions regarding the configurations of polypeptide 
chains in proteins (Corey & Donohue, 1950; Corey, 
1940, 1948). These past investigations, together with 
the present one and others now in progress, are a par t  
of a current program of research on the structure of 
protein molecules at this Institute.  Because of its 
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importance to the amino acid and protein program, 
DL-serine (~-amino-fl-hydroxypropionic acid) received 
attention in these Laboratories first in 1942, when its 
unit  cell and space group were determined (Lu, un- 
published work). Continuation of tha t  work was un- 
successful in revealing the structure, which did not 
appear to be amenable to t rea tment  by the two- 
dimensional methods which were used. 

In  the investigation of the crystal structure of 
threonine (Shoemaker et al., 1950) the use of the three- 
dimensional Pat terson function enabled the deter- 
mination of the approximate structure to be made in 
the face of a complexity tha t  had defied two-dimen- 
sional methods and trial-and-error procedures. Conse- 
quently the decision was made to resume work on 
DL-serine with the intention of applying the three- 
dimensional Patterson method. This method led 
quickly to the approximate structure and was, more- 
over, also used to advantage in carrying out a pre- 
l iminary refinement of parameters, thereby obviating 
altogether the use of Fourier projections and trial- 
and-error procedures for this purpose, since parameters 
of sufficient precision to justify immediate use of 
three-dimensional least-squares and Fourier refine- 
ment  methods were obtained. These methods quickly 
converged to give the final atomic positional" para- 
meters. 

Experimental 

The DL-serine used in this work was prepared by Dr 
Roland N. Icke, and was made available to us by 
Prof. Carl Niemann of this Institute.  Crystals for use 
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